作为国内领先的APS生产管理与物料控制软件原厂商, 永凯APS一直坚持自主开发,最大限度地帮助生产制造型企业降低生产成本, 最终提高整个企业的生产及管理效率。在永凯APS多年来丰富实践的基础上, 永凯APS在 五金行业、家电行业、模具行业、化工行业、注塑行业、机械行业、电子行业、钢铁行业、食品行业、汽车行业、医药行业 等生产制造领域形成了一系列APS行业解决方案。 同时,各个制造领域成功应用的行业实践也证明了 永凯APS生产管理与物料控制行业解决方案是成熟高效的,完全可以大大改善企业的生产和管理效率。
永凯APS汽车零部件行业解决方案, 广泛借鉴了国内外汽车零部件企业信息化的成功经验和国际先进汽车零部件行业解决方案的特点, 充分考虑中国汽车零部件企业所面临的现实环境以及诸多个性化需求, 帮助中国汽车零部件企业实现优化生产管理流程,提高对客户需求的快速响应能力, 降低生产营运成本和提高工作效率,提高企业发展的核心竞争力等目标, 为提高中国汽车零部件企业的核心竞争力做出贡献。
机械制造行业由于其工艺复杂的生产特点,工艺及在制品管理困难。 单纯的靠手工排程,难以满足现代企业快速发展的需要。 永凯APS积累了丰富的机械制造行业经验和众多机械行业客户的实践, 基于供应链管理和约束理论,通过平衡有限生产能力和物料需求, 帮助机械制造企业建立精准、详尽的生产与物料计划, 为企业不断提升管理水平,增强企业核心竞争力提供整体解决方案。
永凯APS注塑行业解决方案,通过注塑行业用户的生产管理模式, 基于行业性以及生产和排程功能,在研究和探索形成以注塑行业的关键应用和难点为重点, 突出注塑行业的个性化应用,帮助注塑行业实现以销定产、快速响应市场需求。 运用灵活敏捷的计划体系,将市场需求快速地分解成可以执行的采购、生产和委外加工计划, 缩短了产品交货周期,减少注塑企业的订单交期压力, 从而全面提升企业运营效率,帮助注塑企业提升业绩,并在市场竞争中获得竞争优势,实现企业长期发展的目标。
永凯APS家电行业解决方案在众多客户广泛实践的基础上积累了丰富的行业经验, 提炼出了一套符合家电行业特点的一体化的信息化全面解决方案。 该方案专门针对家电行业的管理重点和难点,深入分析家电行业的应用需求, 充分发挥永凯APS先进生产管控技术平台和强大业务功能的优点,强调生产计划与执行过程优化, 本着“快速配置、快速实施、快速应用、快速见效”的原则, 有效解决家电行业的困惑与难题,是家电企业实施生产信息化的最佳选择。
在充分考虑到电子行业企业生产管理特色及模式之后, 永凯APS电子行业解决方案以先进生产管理理念为核心, 以灵活多变的强大功能为依托,通过库存管理、优化排程、 现场控制帮助电子行业合理控制企业物流。销售计划、 生产计划和采购计划有效集成,有机结合了电子业企业的现状, 对电子电器行业企业有很好的适应性。永凯APS通过精益生产, 缩短了生产周期,提高了生产效率,降低了库存成本,加快了市场响应速度, 减少了电子企业的订单交期压力,从而全面提高了企业服务水平和竞争力, 帮助电子企业提升业绩,并在市场竞争中获得竞争优势,实现企业长期发展的目标。
作为国内领先的APS生产管理与物料控制软件原厂商, 永凯APS一直坚持自主开发,最大限度地帮助生产制造型企业降低生产成本, 最终提高整个企业的生产及管理效率。在永凯APS多年来丰富实践的基础上, 永凯APS在 五金行业、家电行业、模具行业、化工行业、注塑行业、机械行业、电子行业、钢铁行业、食品行业、汽车行业、医药行业 等生产制造领域形成了一系列APS行业解决方案。 同时,各个制造领域成功应用的行业实践也证明了 永凯APS生产管理与物料控制行业解决方案是成熟高效的,完全可以大大改善企业的生产和管理效率。
永凯多年以来坚持不懈,为不同行业提供专业的精益生产管理与物料控制解决方案。 有着丰富的成功导入业绩,截止2016年6月, 永凯APS已被1112 家制造工厂成功导入。 请看下面各行业类型的导入业绩比率表。
永凯软件是行业前沿的供应链计划协同(SCP)和生产计划与排程(APS)管理系统的美资供应商,涵盖需求计划、产销协同和生产计划排程。助力实现生产、供给、销售协同,准时交货、降低库存、提升利润,已在一千多家工厂及众多世界500强企业中成功应用。
优化遗传算法解决APS排程问题
发表时间: 2012年12月4日 来源:永凯软件技术(上海)有限公司
Hopfield神经网络模型的提出为求解各种有约束优化问题开辟了一条新途径,用 Hopfield网络解决TSP问题就是其在组合优化问题中的最成功的应用之一。它的主要思路是:通过一个Lyaplmov能量函数构造网络的极值,当网络迭代收敛时,能量函数达到极小,使与能量函数对应的目标函数得到优化。文介绍了一种随机Hopfield网络来解决Job Shop排程问题的方法;文中为了解决大规模问题,又提出一种改进的Hopfield网络的整数线性规划神经网络方法来解决Job Shop排程问题;文中也提出了一种用于解决Job Shop排程问题的神经网络方法。
遗传算法
美国Michigan大学的J.H.Holland于本世纪末提出了一种新的并行优化搜索方法:遗传算法(Genetic Algorithm),它是一种基于进化论优胜劣汰、自然选择、适者生存和物种遗传思想的随机优化搜索算法,通过群体的进化来进行全局性优化搜索。它以其很强的并行性和很高的计算效率正日益受到人们的关注。它对组合优化问题求解的主要过程是:给定一组初始解作为一个群体,通过选择、交换和变异等遗传操作符来搜索问题的最优解。文中提出了一种基于遗传算法的启发式方法,用于解决以最小化Makespan为指标的flow shop排程问题;文用遗传算法解决Job shop排程问题;有的学者将遗传算法与图搜索法相结合,利用遗传算法进行知识的推理、启发,再用过滤束搜索法(filter beam search)进行优化搜索,以得到高质量的FMS静态排程;文提出了一种并行遗传算法,试图解决常规遗传算法在解决FMS排程问题时产生的计算速度较慢及过早收敛等问题。
总的来说,遗传算法的最大优点是通过群体间的相互作用,保持已经搜索到的信息,这是基于单次搜索过程的优化方法所无法比拟的。但是,遗传算法也存在着计算速度较慢的问题。
基于智能的排程方法
近年来受实际需要的推动,基于知识的智能排程系统和方法的研究取得了很大的进展。人工智能在60年代就将计划问题作为其应用领域之一,但直到80年代,以Carnegie─Mellon大学的M.Fox为代表的学者们开展基于约束传播的ISIS(Intelligent Scheduling and Information System)的研究为标志,人工智能才真正开始应用于排程问题。基于知识的排程方法是用专家系统自动产生排程或辅助人去排程。它是将传统的排程方法与基于知识的排程评价相结合的方法。在八十年代后期,几位学者先后开展了基于排程系统处于不同的状态,采用不同的排程规则策略的动态排程方法的研究。它们研究的共同特点是:在支持某些活动发生的资源条件具备时(称为决策点),根据系统当时所处的属性状态,决定采取何种规则(策略),确定或选择活动发生的顺序和时间,即状态指导的智能排程方法。
标签:
热门标签更多